A Boltzmann based estimation of distribution algorithm
نویسندگان
چکیده
The Elitist Convergent Estimation of Distribution Algorithm (ECEDA), is a definition of a class of EDA which guarantees convergence to the optimum. This paper introduces the conceptual ECEDA and a practical approach derived from it, called the Boltzmann Univariate Marginal Distribution Algorithm (BUMDA). The BUMDA uses a Gaussian model to approximate the Boltzmann distribution, requiring only one user given parameter: the population size. Several experiments and statistical analysis are used to contrast the BUMDA with state of the art EDAs.
منابع مشابه
Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability
This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملMulti-objective Measurement Devices Allocation Using State Estimation in Distribution System
Allocation of measurement devices is a necessity of distribution system which is an application of state estimation. In this paper, the problem of active and reactive measurement devices is modeling using a multi-objective method. The objectives of the problem are to minimize the use of measurement devices, increase in state estimation output, improve the state estimation quality and reduce cos...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملتخمین حالت در شبکه های توزیع برق بر مبنای بهینه سازی اجتماع ذرات دو حلقه ای جهش یافته (DLM-PSO)
This paper presents a novel algorithm based on particle swarm optimization (PSO) to estimate the states of electric distribution networks. In order to improve the performance, accuracy, convergence speed, and eliminate the stagnation effect of original PSO, a secondary PSO loop and mutation algorithm as well as stretching function is proposed. For accounting uncertainties of loads in distributi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 236 شماره
صفحات -
تاریخ انتشار 2013